SINTESIS ZEOLIT CHABAZITE DENGAN RASIO Si/Al TINGGI TANPA MENGGUNAKAN SENYAWA ORGANIK

Authors

  • Iftitah r Kadir1 UNIVERSITAS NURTANIO
  • Grandprix T.M Kadja UNIVERSITAS NURTANIO BANDUNG
  • Rino R Mukti UNIVERSITAS NURTANIO BANDUNG

Abstract

Zeolit tipe Chabazite (CHA) merupakan material bermikropori dengan 8 saluran cincin yang memiliki potensi besar untuk diaplikasikan sebagai katalis pada reaksi MTO (Methanol to Olefins. Umumnya zeolite tipe CHA dengan kadar silika tinggi bersifat hidrofobik dan disintesis menggunakan bantuan senyawa organik N,N,N-Trimethyl-1-adamanammonium hydroxide (TMAdaOH) sebagai pengarah struktur (Structure Directing Agent, SDA). Akan tetapi penggunaan SDA terutama TMAdaOH sangat  tidak ekonomis dan tidak ramah bagi lingkungan. Untuk membuka pori zeolit, senyawa organik ini harus dihilangkan dengan pembakaran suhu tinggi. Pada tahap awal penelitian ini, CHA disintesis melalui transformasi interzeolit FAU (Faujasite) menjadi CHA, namun produk yang dihasilkan memiliki kadar silika rendah (Si/Al = 2), sehingga kami merancang proses sintesis CHA baru tanpa SDA dengan mereaksikan kembali produk CHA hasil inter-transformasi dengan penambahan sumber silika, alumina, NaOH, dan KOH. Metode hidrotermal diterapkan pada campuran ini dengan menggunakan suhu 170 oC selama 24 jam. Variasi komposisi molar Na2O dan K2O dengan kisaran 0.1 hingga 0.4 dilakukan untuk mempelajari pegaruh sinergis Na+ dan K+ terhadap kristalisasi zeolit tipe CHA dengan rasio Si/Al tinggi. Hasil analisis difraksi sinar-X (XRD) menunjukan zeolit tipe CHA dapat dihasilkan kembali dan fluorosensi sinar-X (XRF) menunjukan produk ini mempunyai rasio Si/Al=4 dari perbandingan Na2O dan K2O berturut-turut adalah 0,3 dan 0,1. Selanjutnya citra mikroskop pemindai electron (SEM) memperlihatkan morfologi dan ukuran partikel produk yang sama dengan morfologi dan ukuran kristal CHA hasil inter-transformasi.

Author Biographies

Iftitah r Kadir1, UNIVERSITAS NURTANIO

FAKULTAS TEKNIK

Grandprix T.M Kadja, UNIVERSITAS NURTANIO BANDUNG

FAKULTAS TEKNIK

Rino R Mukti, UNIVERSITAS NURTANIO BANDUNG

FAKULTAS TEKNIK

References

Auerbach, S.M., Carrado, K.A., Dutta, P.K., (2003)., Handbook of Zeolit Science and Technology, 1st edition, Marcel Dekker, Inc., New York, 1-22.

Baur, W.H., (1964)., On the cation and water positions in faujasite., Am. Miner. 49, 697-704.

Bieniok, A., Bornholdt, K., Brendel, U., Baur, W.H., (1996)., Synthesis and crystal structure of zeolite W, resembling the mineral merlinoite., J. Muter. Chem., 6, 271-275.

Bohström, Z., Arstad, B., and Lillerud, K.P.,(2014)., Preparation of high silica chabazite with controllable particle size, Microporous and Mesoporous Materials, 195, 294–302.

Cejka, J., Bekkum H., Corma, A., dan Schuth, F. (2007) : Introduction od Science and Practice- 3rd Revised Edition, 39-103.

Cundy, C.S., and Cox, P.A., (2005)., The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism., Microporous and Mesoporous Materials, 82, 1–78.

Duan, A., Li, T., Niu, H., Yang, H., Wang, Z., Zhao, Z., Jiang, G., Liu, J., Wei, Y., Pan, H., (2015), A New Era of Catalysis for a Sustainable World Synthesis of a novel zeolite W and application in the catalyst for FCC gasoline hydro-upgrading., Catalysis Today, 245, 163-171.

Eilertsen, E.A., Arstad, B., Svelle, S., and Lillerud, K.P., (2012)., Single parameter synthesis of high silica CHA zeolites from fluoride media, Microporous and Mesoporous Materials, 153, 94–99.

Erichsen, M.W., Svelle, S., Olsbye, U., (2013)., H-SAPO-5 as methanol-to-olefins (MTO) model catalyst: Towards elucidating the effects of acid strength, Journal of Catalysis, 298, 94–101.

Fabiani, V.A., Sintesis dan Karakterisasi Zeolit MFI pada Suhu Rendah menggunakan Prekursor Silika Alam, (2014)., Institut Teknologi Bandung.

Ferchiche, S., Warzywoda, J., Sacco, (2001)., Direct synthesis of zeolite Y with large particle size., International Journal of Inorganic Materials, 3, 773 –780.

Garcia, G., Cardenas, E., Cabrera, S., Hedlund, J., and Mouzon, J., (2015)., Synthesis of zeolite Y from diatomite as silica source, Microporous and Mesoporous Materials, 219, 29-37.

Goel, S., Zones, S.I., and Iglesia, E., (2015)., Synthesis of Zeolites via Interzeolit Transformations without Organic Structure-Directing Agents, Chem. Mater, 27, 2056−2066.

Goel, S., Zones, S.I., and Iglesia, E., (2014)., Encapsulation of Metal Clusters within MFI via Interzeolite Transformations and Direct Hydrothermal Syntheses and Catalytic Consequence of Their Confinement., J. Am. Chem. Soc, 136, 15280-15290.

Hasegawa, Y., Abe, C., Mizukami, F., Kowata, Y., and Hanaoka, T., (2010)., Application of a CHA-type zeolite membrane to the esterification of adipic acid with isopropyl alcohol using sulfuric acid catalyst., Journal of Membrane Science, 415–416, 368–374.

Hasegawa, Y., Abe, C., Nishioka, M., Sato, K., Nagase, T., and Hanaoka, T, (2010), Influence of synthesis gel composition on morphology, composition, and dehydration performance of CHA-type zeolite membranes, Journal of Membrane Science, 363, 256–264.

Honda, K., Yashiki, A., Itakura, M., Ide, Y., Sadakane, M., and Sano, T., (2010)., Influence of Seeding on FAU-BEA* Interzeolite Conversions, Microporous and Mesoporous Materials, 142, 151-167.

Imai, H., Hayashida, N., Yokoi, T., and Tatsumi, T., (2014)., Direct crystallization of CHA-type zeolite from amorphous aluminosilicate gel by seed-assisted method in the absence of organic-structure-directing agents., Microporous and Mesoporous Materials, 196, 341-348.

Ismunandar., Padatan Oksida Logam; Struktur, Sintesis, dan Sifat-sifatnya., (2006)., Penerbit ITB, Bandung, 14 – 16.

Itabashi , K., Kamimura, Y., Iyoki, K., Shimojima, A., and Okubo, T., (2012)., A working hypothesis for Broadening Framework Typrs of Zeolites in Seed-assisted Synthesis without Organin Structure Directing Agents. J. Am. Chem. Soc, 134, 11542-11549.

Itakura, M., Goto, I., Takahashi, A., Fujitani, T., Ide, Y., Sadakane, M., and Sano, T., (2011)., Sintesis of high-silica CHA type zeolite by interzeolite conversion of FAU type zeolite in presence of seed crystals., Microporous and Mesoporous Materials, 144, 91-96.

Downloads

Published

2021-02-09