PENENTUAN EOQ TERHADAP PRODUK AVTUR DI LANUD HUSEIN SASTRANEGARA BANDUNG

Samsul Budiarto, ST., MT Dosen Tetap Teknik Industri, Wakil Dekan III Fakultas Teknik, Universitas Nurtanio Bandung Jl. Pajajaran No 219 Bandung

Abstraksi

Alat transportasi yang merupakan salah satu sarana yang digunakan masyarakat dan instansiinstansi pemerintah dalam beraktivitas adalah Pesawat Terbang memegang peranan penting dalam menunjang aktivitas keseharian manusia. Hal ini pun menjadi bagian dari kegiatan di lingkungan TNI AU.

Bagian Bahan Minyak Pelumnas (BMP) adalah satuan pelaksana teknis pengelolaan bahan minyak dan pelumnas bagi kebutuhan transportasi dilingkungan Husein Sastranegara yang dalam melaksanakan fungsi administrasi perbendaharaan BMP tercakup didalamnya fungsi distribusi yang meliputi kegiatan penerimaan, penyimpanan, penyaluran, pemeriksaan dan administrasi.

TINJAUAN PUSTAKA

Pengendalian Produksi

Fungsi pengendalian produksi adalah:

- Meramalkan permintaan produk yang dinyatakan dengan jumlah sebagai suatu fungsi dari waktu.
- Memantau permintaan nyata dan membandh-iokannva dengan ramalan permintaan serta memperbaiki ramalan tersebut jika diperlukan.
- 3. Membuat sistem pengendalian secara ekonomis.

- Membuat keperluan produksi clan tingkat pengendalian pada batas waktu tertentu.
- Memantau tingkat pengendalian dan membandingkannya dengan rencana pengendalian serta memperbaiki rencana produksi jika diperlukan.
- Membuat rincian dari jadwal produksi, penugasan pekerjaan, beban mesin dan lain-lain.
- Melakukan perencanaan proyek dengan menggunakan CPM, PERT clan lain-lain.

Persediaan

Pengertian Dan Jenis Persediaan

Persediaan dapat didefinisikan bahan/barang yang disimpan dalam gudang untuk kemudian digunakan atau dijual. Persediaan dapat berupa bahan baku untuk keperluan proses, barang-barang yang masih dan pengolahan dan barang jadi yang disimpan untuk penjualan. Persediaan adalah hal yang pokok sebagai fungsi yang tepat dari suatu usaha pengolahan/pembuatan.

Fungsi Persediaan

- 1. Faktor Waktu.
- Faktor ketergantungan.
 Selain itu tugas dalam pengendalian persediaan meliputi :
- Menetukan jenis dan jumlah bahanbahan yang harus dibeli menetukan kapan pesanan harus dilakukan
- Meminta pada bagian pembelian untuk membeli bahan-bahan yang sudah ditentukan.
- Memeriksa apakah bahan-bahan sesuai dengan jumlah spesifikasi bahan yang dipesan, jika sesuai lalu disimpan dalam gudang.
- Melakukan pengecekan bahan, untuk melihat apakah bahan yang terpakai dan yang belum terpakai.

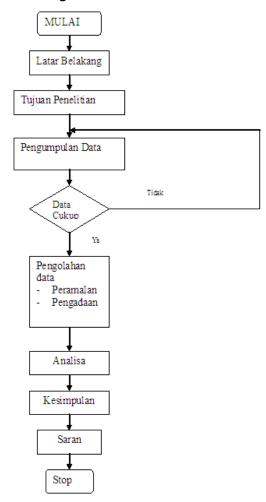
- Melakukan catatan administrasi mengenai jenis, jumlah dan nilai persediaan.
- Mengadakan pemeriksaan langsung mengenai fisik dan administrasi persediaan didalam gudang.

Sedangkan tujuan dalam pengendalian persediaan meliputi :

- Menjaga jangan sampai perusahaan kehabisan persediaan sehingga terhentinya produksi.
- Menjaga agar pembelian secara kecilkecilan dihindari.
- Menjaga agar pembentukan persediaan dilakukan dengan perhitunbgan yang tepat.

Ongkos Sistem persediaan

- Ongkos pembelian yaitu semua ongkos yang ditimbulkan untuk membeli barang.
- Ongkos pemesanan/pengadaan dibedakan atas :
 - a. Ongkos pemesanan yaitu semua ongkos yang ditimbulkan unutk mendatangkan barang dari luar.
 - b. Ongkos pembuatan yaitu semua ongkos yang ditimbulkan untuk persiapan dalam memproduksi barang.
- 3. Ongkos Simpan
 - a. Ongkos memiliki persediaan yaitu ongkos yang muncul karena adanya barang digudang.

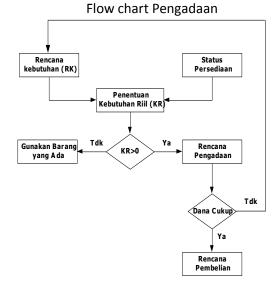

- b. Ongkos gudang yaitu ongkos yang timbul akibat perlunya tempat untuk menyimpan barang.
- c. Ongkos kerusakan atau penyusutan yaitu ongkos yang timbul akibat rusaknya barang saat dibawa ketempat produksi atau berkurangnya berat barang.
- d. Ongkos kadaluarsa yaitu ongkos yang timbul akibat munculnya model baru sebagai substitusi.
- e. Ongkos asuransi yaitu ongkos yang timbul untuk menjaga barang terhadap hal-hal yang tidak diinginkan, seperti kebakaran, pencurian dan lain-lain.
- f. Ongkos administrasi yaitu ongkos yang dibebankan.
- g. Ongkos lain-lain yaiut semua ongkos penyimpanan yang belum dimasukan kedalam ongkos-ongkos diatas.

4. Ongkos kekurangan Persediaan

- a. Ongkos untuk melakukan tindakan penanggulangan berupa pemesanan darurat yang biasanya menimbulkan biaya tambahan, biaya perbaikan atau tindakan lain yang ditujukan untuk mengatasi keadaan ini.
- b. Ongkos yang timbul karena kehilangan kesempatan memperoleh keuntungan.
- Ongkos akibat kerugian yang diderita karena terhentinya kegiatan produksi.

METODOLOGI PENELITIAN

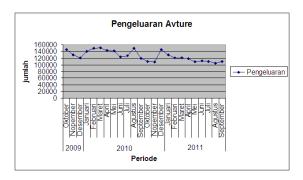
Aliran Kerangka Pemecahan Masalah


Gambar 1 Aliran Kerangka Pemecahan Masalah

Flow chart Peramalan

Gambar 2 Aliran Kerangka Prosedur Peramalan

Setelah hasil peramalan yang terbaik diperoleh maka hasil peramalan tersebut dapat dijadikan masukan.


Gambar 3

Aliran Kerangka Proses Pengadaan

Data Demand Aktual

Data Penjualan Actual untuk Bagian BMP Lanud Husein Sastranegara periode Oktober 2007-September 2009

Tahun	Bulan	Pengeluaran		
	5			
2009	Oktober	145250		
	Nopember	129700		
	Desember	120450		
2010	Januari	140100		
	Februari	149700		
	Maret	150750		
	April	143000		
	Mei	142000		
	September	122900		
	Juli	126650		
	Agustus	149000		
	September	119500		
	Oktober	110500		
	Nopember	109250		
	Desember	145250		
2011	Januari	129800		
	Februari	120680		
	Maret	120850		
	April	118100		
	Mei	108750		
	September	112000		
	Juli	110200		
	Agustus	105500		
	September	110000		
JUMLAH		3039880		
	ı	ı		

Gambar 3.5 Grafik Data penjualan Avtur

Pengolahan Data

Peramalan

- 1. Single Exponential Smoothing (SES)
- Double Exponential Smoothing With trend (DEST)
- 3. Metode Peramalan Simple Average (SA)
 Untuk produk Avtur
- Perhitungan Peramalan dengan metode Single Exponential Smoothing (SES) untuk produk Avtur

Rumus yang digunakan:

$$F_{1+1} = F_t + \alpha \left(X_t - F_1 \right)$$

Dengan bantuan Software Excel dengan cara trial and error yang menggunakan alpha = 0-1, dihasilkan MAD yang terkecil yaitu dengan alpha = 0,22. contoh perhitungan untuk peramalan pada period ke-2, maka :

Inisialisasi = F1 = X1 dan α = 0,22

$$F_{1+1} = F_2 = 145250 + 0,22 (145250 - 145250) = 145250$$

 $F_{2+1} = F_3 = 145250 + 0,22 (129700 - 145250) = 141829$

Untuk hasil perhitungan selanjutnya dapat dilihat pada table berikut ini :

Tabel 3.5

Hasil Peramalan Single Exponential Smoothing Alpha = 0.22

	•	
Periode	Penjualan	Peramalan
1	145250	145.250
2	129700	145.250
3	120450	141.829
4	140100	137.126
5	149700	137.780
6	150750	140.402
7	143000	142.679
8	142000	142.750
9	122900	142.585
10	126650	138.254
11	149000	135.701
12	119500	138.627
13	110500	134.419
14	109250	129.157
15	145250	124.777
16	129800	129.281
17	120680	129.395
18	120850	127.478
19	118100	126.020
20	108750	124.277
21	112000	120.861
22	110200	118.912
23	105500	116.995
24	110000	114.466

Untuk hasil peramalan 12 periode kedepan adalah sebagai berikut :

Tabel 3.6
Hasil Peramalan 12 Periode Kedepan

Periode	Peramalan	
25	113.484	
26	113.484	
27	113.484	
28	113.484	
29	113.484	
30	113.484	
31	113.484	
32	113.484	
33	113.484	
34	113.484	
35	113.484	
36	113.484	

2. Perhitungan peramalan dengan menggunakan metode Double Exponential Smoothing With Trend (DEST) untuk Produk Avtur

Rumus yang digunakan dalam metode Double Exponential Smoothing Browns (DESB) adalah:

$$S'_{t} = \alpha X_{t} + (1 - \alpha) S'_{t-1}$$

$$S''_{t} = \alpha S'_{t} + (1 - \alpha) S''_{t-1}$$

$$\alpha_{t} = S'_{t} + (S'_{t} - S''_{t}) = 2S'_{t} - S''_{t}$$

$$b_{t} = \frac{\alpha}{1 - \alpha} (S'_{t} - S''_{t})$$

$$F_{t+m} = a_{t} + b_{t} (m)$$

Dimana:

 $F_{t+m} = Peramalan \ Periode \ Ke - t + m$

 $S'_{+} = Pemulusan Pertama Periode Ke-t$

 $S''_{,} = Pemulusan Kedua Periode Ke-t$

 $X_{t} = Per \min taan Pada Periode Ke - t$

a, b = Parameter Peramalan

t = Periode

m = jumlahaperiodekedepan

 $\alpha = Bobot$ yang mempengaruhi besarnya pemulusan, nilainya antara 0-1.

Dengan bantuan Software excel dengan cara trial and error yang menggunakan alpha = 0 - 1, dihasilkan MAD yang terkecil yaitu, dengan alpha = 0,22. Contoh perhitungan untuk peramalan pada periode ke-4 adalah sebagai berikut :

$$S'_3 = 0.22 \times 120450 + (1 - 0.22) \times 141829 = 137126$$

$$S''_3 = 0.22 \times 137126 + (1 - 0.22) \times 144497 = 142876$$

$$a_3 = 137126 + (137126 - 142876) = 131376$$

$$b_3 = \frac{0.22}{1 - 0.22} \cdot (137126 - 142876) = -1622$$

$$F_{3+1} =$$
 131376 +(-1622) (1) = 129754

Tabel 3.7

Hasil Peramalan Double Exponential

Smoothing With Trend

Alpha = 0,22

Periode	Penjualan	Peramalan
1	145250	
2	129700	145.250
3	120450	138.408
4	140100	129.754
5	149700	132.684
6	150750	139.050
7	143000	143.901
8	142000	143.773
9	122900	143.218
10	126650	134.418
11	149000	130.156
12	119500	137.227
13	110500	129.119
14	109250	119.761
15	145250	113.069
16	129800	124.653
17	120680	125.899
18	120850	122.834
19	118100	120.939
20	108750	118.572
21	112000	112.995
22	110200	110.827
23	105500	108.772
24	110000	105.523

Tabel 3.8
Hasil Peramalan 12 Periode kedepan

Periode	Peramalan
25	105.526
26	103.775
27	102.024
28	100.273
29	98.523
30	96.772
31	95.021
32	93.270
33	91.519
34	89.769
35	88.018
36	86.267

3. Metode Peramalan Simple Average (SA) untuk produk Avtur

Contoh perhitungannya adalah sebagai berikut :

$$F_{t+1} = \overline{X} = \sum_{t=r}^{T+r-1} \frac{X_t}{T}$$

$$F_{t+1} = F_2 = \sum_{T=1}^{1} \frac{145250}{1} = 145250$$

$$F_{2+1} = F_3 = \frac{145250 + 129700}{2} = 137475$$

Untuk hasil Peramalan 12 Periode ke depan adalah sebagai berikut :

Untuk hasil perhitungan selanjutnya adalah sebagai berikut :

Tabel 3.9
Peramalan Simpel Average

Periode	Peramalan	
1	2	3
1	145250	
2	129700	145.250
3	120450	137.475
4	140100	131.800
5	149700	133.875
6	150750	137.040
7	143000	139.325
8	142000	139.850
9	122900	140.119
10	126650	138.206
11	149000	137.050
12	119500	138.136
13	110500	136.583
14	109250	134.577
15	145250	132.768
16	129800	133.600
17	120680	133.363
18	120850	132.616
19	118100	131.963
20	108750	131.233
21	112000	130.109
22	110200	129.247
23	105500	128.381
24	24 110000 127.386	

Untuk peramalan 12 periode berikutnya dapat dilihat pada tabel berikut :

Tabel 3.10
Hasil peramalan 12 periode mendatang :

Periode	Peramalan
25	126.662
26	126.662
27	126.662
28	126.662
29	126.662

30	126.662
31	126.662
32	126.662
33	126.662
34	126.662
35	126.662
36	126.662

Uji Verifikasi (Kesalahan peramalan) Avtur

1. Uji Verifikasi metode *Single Exponential Smoothing* dengan Error² = 4140396866, abs = 264099

Rumus yang digunakan:

$$MAD = \frac{\sum |Et|}{n} = \frac{264099}{23} = 11482.6$$

Uji Verifikasi metode Peramalan Double
 Exponential Smoothing WithTrend,
 Error² = 3689537752, abs = 235594
 Rumus yang digunakan :

$$MAD = \frac{\sum |Et|}{n} = \frac{235594}{23} = 10342.2$$

3. Uji Verifikasi Metode Simple Average

Error² = 5.982.723.987, abs = 341506

Rumus Yang digunakan:

$$MAD = \frac{\sum |Et|}{n} = \frac{341506}{23} = 14848.07$$

Pemilihan Metode Peramalan Terbaik Untuk produk Avtur

Dalam memilif alternatif terbaik pemilihan didasarkan pada kriteria nilai rata-rata deviasi absolut (Mean Absolute Deviation) kemudian dipilih yang mempunyai nilai deviasi absolute terkecil. Karena metode peramalan Single Eksponential Smootjing mempunyai nilai ratarata deviasi absolut terkecil maka metode peramalan ini terpilih menjadi metode peramalan terbaik dari ketiga alternative metode peramalan yang dipakai.

Tabel 3.26
Hasil MAD dari setiap metode peramalan
Avtur

Metode Peramalan	Mean Absolute		
	Deviation		
Single Eksponential	11482.57		
Smoothing			
Double Exponential	10243.22		
Smoothing with trend			
Simple Average	14848.07		

Uji Validasi Peramalan dengan Moving Range.

Uji validasi ini dilakukan untuk metode peramalan yang terpilih.

Moving Range Avtur dengan metode peramalan yang terpilih yaitu metode Double Exponential SmoothingWith Trend

Untuk lebih lengkap perhitungan moving range dapat dilihat pada tabel dibawah ini :

Tabel 3.35
Uji Validasi Moving Range

Oji vandusi Moving Kange					
Periode	Penjualan	Peramalan	Error	MR	MR abs
1	145250				
2	129700	145.250	-15.550		
3	120450	138.408	-17.958	2.408	2.408
4	140100	129.754	10.346	28.304	28.304
5	149700	132.684	17.016	-6.669	6.669
6	150750	139.050	11.700	5.316	5.316
7	143000	143.901	-901	12.600	12.600
8	142000	143.773	-1.773	873	873
9	122900	143.218	-20.318	18.545	18.545
10	126650	134.418	-7.768	- 12.551	12.551
11	149000	130.156	18.844	- 26.612	26.612
12	119500	137.227	-17.727	36.571	36.571
13	110500	129.119	-18.619	892	892
14	109250	119.761	-10.511	-8.108	8.108
15	145250	113.069	32.181	- 42.692	42.692
16	129800	124.653	5.147	27.034	27.034
17	120680	125.899	-5.219	10.366	10.366
18	120850	122.834	-1.984	-3.236	3.236
19	118100	120.939	-2.839	855	855
20	108750	118.572	-9.822	6.983	6.983
21	112000	112.995	-995	-8.827	8.827
22	110200	110.827	-627	-368	368
23	105500	108.772	-3.272	2.645	2.645
24	110000	105.523	4.477	-7.749	7.749
Total				- 20.027	270.206

Untuk nilai rata-rata Moving Range adalah sebagai berikut:

$$\overline{MR} = \frac{\sum MR}{N} = \frac{270206}{22} = 12282$$

Dimana:

MR = Rata-rata Moving Range

MR = Nilai Moving Range

N = jumlah nilai MR

Test Out Of Control:

Parameter-parameter dalam test out of control adalah :

1. UCL = +2,66. MR

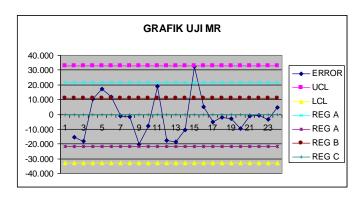
= + 2,66 x 12282 = 32670

2. LCL = -2,66 . MR

= - 2,66 x 21256 = - 32670

3. Region A = $\pm 1,77$. MR

= ± 1,77 x 12282


 $= \pm 21739$

4. Region B = ± 0.89 . MR

= ± 0,89 x 12282

 $= \pm 10931$

5. Region C = Centre Line = 0

Gambar 3.8 Grafik Uji Moving

Range Metode SES

Berdasarkan gambar diatas dapat disimpulkan bahwa data tidak ada yang out of control. Dengan kata lain, semua data terkontrol.

Hal ini didasarkan pada aturan bahwa:

- Dari tiga titik berurutan tidak terdapat 2 titik atau lebih di daerah A
- 2. Dari 5 titik berurutan tidak terdapat 4 titik atau lebih didaerah B
- Dari 8 titik berurutan tidak terdapat didaerah C.

Pengadaan

Perhitungan Metode EOQ produk Avtur

Berdasarkan nilai peramalan yang diperoleh dari metode peramalan terpilih untuk produk Avtur yaitu metode *Double Exponential Smoothing With Trend (DEST)*.

Pengumpulan Data:

Total Peramalan

Tahun Mendatang = 1150756 Liter

Biaya Pembelian = Rp.8050,-

- Harga beli / liter = Rp. 8000,-

- Biaya Angkut / liter = Rp. 50

Biaya Penyimpanan

Biaya Penyimpanan/Liter/tahun

=10%XRp.8050,-

= Rp.805

Biaya Pemesanan untuk sekali pesan

= Rp.50.000,-

Perhitungan EOQ untuk menentukan pemesanan ekonomis :

Metode EOQ hasil Peramalan

Dimana:

 Q_i = Ukuran Lot

 a_i = Biaya Pemesanan = 5.000

d; = Kebutuhan produk pertahun = 115756

 h_i = Biaya Simpan perunit/tahun = 805

$$Q_{i} = \sqrt{h \frac{2 \cdot a_{i} \cdot d_{i}}{hi}}$$

$$= \sqrt{\frac{2 \cdot (50000) \cdot (1150756)}{805}}$$

$$= 3781/Pesan$$

Jarak (jangka waktu) optimal antara 2 pesanan:

$$T* = \frac{Q_i}{d_i}$$

= $\frac{3781}{1150756} = 0.00328 \text{ tahun}$

Apabila 1 tahun adalah 365 hari maka T*

adalah 0,00328 X 365 = ± 2 hari

Sahingga Total Annual Relevant Cost ava

Sehingga *Total Annual Relevant Cost-nya* adalah:

$$TC = \binom{d_i}{Q_i} \cdot a_i + h_i \cdot \binom{Q_i}{2}$$

$$= \binom{1150756}{3781} \cdot 50000 + 805 \cdot \binom{3781}{2}$$

$$= Rp.16.739.466,89/ pesan$$

Kesimpulan:

Dari hasil perhitungan EOQ yang menetapkan waktu optimal antara 2 pesanan adalah ± 2 hari dengan jumlah barang yang dipesan sebanyak 3781 liter memperoleh total annual relevant cost sebesar Rp.16.739.466,89 / Pesanan.

Analisa Uji Verifikasi Peramalan dengan Moving Range

Kegunaan peta moving range ialah untuk memvalidasi hasil peramalan terpilih. Jika peta moving range menunjukan keadaan diluar peramalan, maka peramalan pun harus diulang lagi.

Analisa Perhitungan EOQ

Metode EOQ hasil Peramalan

ai = 5.000

di = 1150756 liter / tahun

hi = 805

$$Q_{i} = \sqrt{\frac{2 \cdot a_{i} \cdot d_{i}}{hi}}$$

$$= \sqrt{\frac{2 \cdot (50000) \cdot (1150756)}{805}}$$

$$= 3781/Pesan$$

Jarak (jangka waktu) / interval optimal antara 2 pesanan :

$$T* = \frac{Q_i}{d_i}$$

= $\frac{3781}{1150756} = 0.00328 \text{ tahun}$

Apabila 1 tahun adalah 365 hari maka T^* adalah 0,00328 X 365 = \pm 2 hari Sehingga $Total \ Annual \ Relevant \ Cost-nya \ adalah :$

$$TC = \binom{d_i}{Q_i} \cdot a_i + h_i \cdot \binom{Q_i}{2}$$

$$= \binom{1150756}{3781} \cdot 50000 + 805 \cdot \binom{3781}{2}$$

$$= Rp.16.739.466,89/ pesan$$

Dimana:

 Q_i = Ukuran Lot

 a_i = Biaya Pemesanan

d; = Kebutuhan produk pertahun

h_i = Biaya Simpan perunit/tahun

Dari proses perhitungan metode Economical Order Quantity (EOQ) pihak perusahaan (dalam hal ini Bagian BMP Lanud Husein Sastranegara) dapat menentukan jumlah setiap kali pemesanan, jarak (jangka waktu) optimal antara 2 pesanan

Kesimpulan

Pola data penjualan produk Avtur pada Bagian BMP Lanud Husein Sastranegara cenderung musiman. Hal ini dapat dilihat dari pola datanya yang mengalami penurunan dan kembali mengalami kenaikan pada periode tertentu.

Peramalan yang dijadikan alternatif adalah Single Exponential Smoothing, Double Exponential Smoothing Brown dan Simple Average.

Setelah dilakukan peramalan terhadap data penjualan produk Avtur periode Oktober 2007-September 2009 dengan tiga metode peramalan tersebut diatas diperoleh nilai kesalahan terkecil sehingga dapat dijadikan input untuk proses selanjutnya. Dan grafik Moving Range menunjukan tidak ada data yang out of Control.

Dengan menggunakan metode Order Economical Quantity (EOQ) memperlihatkan jumlah barang yang dibutuhkan yang akan dipesan pada tiap periode berdasarkan hasil peramalan demand (permintaan) untuk memenuhi kebutuhan produk Avtur yang akan dijual kembali kepada konsumen. Yaitu sebanyak 3781 liter

Perhitungan ini juga menentukan waktu pemesanan barang (produk Avtur) yang optimal antara 2 pesanan adalah ± 2 hari dengan total annual relevant cost sebesar Rp.16.739.466,89 /pesanan.